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Abstract
We briefly review results pertaining to the conformations, interactions and phase behavior of
two related soft matter systems: star-branched polyelectrolytes and spherical polyelectrolyte
brushes. Moreover, we present new results on the complexation of stars with oppositely
charged, spherical, hard colloids, demonstrating the versatility of these systems to form novel
complexes that result in a variety of patchy colloids, whose morphology can be affected by
small amounts of added salt. Finally, we demonstrate that spherical polyelectrolyte brushes with
low grafting density have distinct characteristics from dense brushes as regards the condensation
of counterions. Here, condensation of counterions takes place along the rods and the brush
conformation seems to be much more robust to added salt than that of star polyelectrolytes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Star-shaped polymer aggregates are a very important class of
macromolecules in chemistry, soft matter physics and materials
science. Their common characteristic lies in the fact that
the presence of the soft polymer corona surrounding the
colloidal particle on which the chains are grafted or adsorbed
acts as a soft potential energy barrier that prevents close
approaches by other such macromolecules. In this sense,
they bear close resemblance also to self-organized block-
copolymer micelles and they can be thought of as strongly
curved polymer brushes—the planar brush lying on the other
end of the spectrum as far as curvature is concerned. The
conformation of the polymer corona and its size and softness
as well as the ensuing interaction between the star-shaped
particles depend on a number of parameters: the aggregation
number or functionality f of the star, the solvent conditions
that determine the effective monomer interactions, the chain
length N , the grafting density � and, in the case of charged
stars, also the total charge Qs of the macromolecule and the
salinity of the solution.

Whereas neutral stars are now rather well understood as
a result of many efforts in the last 25 years [1–10], less is
known about their charged counterparts, termed polyelectrolyte
stars and abbreviated as PE-stars in what follows. PE-stars
1 Author to whom any correspondence should be addressed.

are always to be found in aqueous solvents, since their polar
nature is the physical reason for the dissociation of ionizable
groups from the chains’ backbone, bringing about the charges
on the arms and the appearance of counterions in the solution.
Typical polyelectrolytes employed in chemically synthesized
PE-stars are sodium-sulfonated polysterene (NaPSS) [11] and
polyacrylic acid [12]. Quite often, PE-stars are obtained by
self-association of micelle-forming block copolymers [13–15],
and their charge and conformations can be influenced by
changing the pH of the solution [16, 17].

A system closely related to PE-stars is spherical PE-
brushes [18]. Here, the size of the colloidal particle, Rc, on
which the PE-chains are grafted is of the order of the brush
height, L0, or bigger. PE-stars are recovered in the limit
Rc � L0, whereas crew-cut brushes result in the opposite
limit Rc � L0, and planar brushes for Rc → ∞. In all
cases, the grafting density � that describes the area of the
surface per grafted chain as well as the ratio of the distance
between grafting points, a, to the brush height L0 are additional
important parameters. The subject and literature of spherical
PE-brushes are very rich; here we mention as an example an
intriguing and currently topical issue of research, namely the
spectacular collapse of the height of densely grafted brushes
under the influence of multi-valent counterions [19–22].

The purpose of this paper is to bring forward two novel and
distinct aspects in the field of PE-stars and brushes that have
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received relatively little attention, and yet they contain exciting
new physics and possess high potential for applications. First
is the complex formation or complexation between PE-stars
and oppositely charged colloids, which is the subject of
section 2. Here, we will demonstrate that a very rich variety
of complex morphologies is possible, opening the way for
the self-assembly of complex colloids. Second is the issue
of the conformations of sparse PE-brushes composed of stiff,
double-stranded DNA polyelectrolytes (ds DNA) grafted on
colloidal particles, a system that shows quite different force–
distance characteristics than dense brushes. This is discussed
in section 3. Finally, in section 4 we summarize and draw our
conclusions.

2. Polyelectrolyte stars

2.1. Conformations and interactions in the bulk

There are three physical parameters characterizing PE-stars:
their degree of polymerization N , their functionality f
and the charging fraction 0 � α � 1, representing
the fraction of monomers that carry an elementary charge
+e.2 The conformations of high-functionality PE-stars have
been studied extensively by Borisov and Zhulina, employing
scaling theory [23, 24], and by Klein Wolterink et al [25],
who employed self-consistent field theory. The salient
characteristics of PE-stars in salt-free solutions are the
stretching of the arms, which attain a rodlike shape, and
the absorption of the vast majority of counterions in their
interior. Recently, Shusharina and Rubinstein extended the
scaling theory for PE-stars to arbitrary concentrations and
salinities [26]. As far as the conformation of a single star
is concerned, they established that the relevant dimensionless
parameter governing the star shape is the ‘coupling constant’:

ζ ≡ λB
f Nα

Rs
, (1)

where Rs is the PE-star radius and λB = e2/(εkBT ) is the
Bjerrum length in a solvent of dielectric permittivity ε at
absolute temperature T with Boltzmann’s constant kB. The
case ζ < 1 corresponds to very weakly charged stars, for which
no counterion condensation in the star interior occurs, whereas
in the regime ζ > 1 the arms become stretched and counterions
are absorbed within the star interior. In fact, the arm stretching,
which amounts to a swelling of the stars, can be thought of as
being caused by the high osmotic pressure of the counterions in
the star interior, a property that justifies the term osmotic stars.

Jusufi et al have followed a different strategy by
employing molecular dynamics (MD) computer simulations
and introducing a variational free energy for PE-stars with f �
10 and relatively high charging fractions, α = 1/6, 1/4 and
1/3 [27, 28]. The osmotic regime was recovered, witnessed
by a strong arm stretching (Rs ∼ N), with monomer density
profiles c(r) ∼ r−2 as functions of the distance r from the
star center and strong counterion condensation. It is indeed
straightforward to check that the stars considered in [27, 28]

2 Without loss of generality, we treat the chains as polycations.

fulfil the ζ > 1 criterion of Shusharina and Rubinstein [26]:
since the radius Rs of the same scales as Rs ∝ σ N , σ being
the monomer length [27, 28], one obtains ζ ∼= λB f α/σ ∼=
f , given that both σ and λB are microscopic length scales3.
Evidently, ζ exceeds unity by at least an order of magnitude
for high-functionality stars. An additional feature of the work
of Jusufi et al [27, 28] was the separation of the absorbed
counterions into two states, the Manning-condensed ones,
cylindrically trapped in the neighborhood of the rods, and the
spherically condensed ones, which float within the PE-star.

The variational free energy of Jusufi et al has been
generalized to two PE-stars held at center-to-center distance
D and yields an effective interaction Veff(D), whose validity
is amply confirmed by comparison with simulations [27, 28].
The theory is based on the assumption of no interdigitation
between the arms from different PE-stars as the two approach
each other, in full agreement with both simulation results and
ideas put forward in the pioneering work of Pincus [29]. The
no-interdigitation assumption has indeed been shown to be
valid even in the semi-dilute regime for the ζ � 1-stars of
concern here [26]. The PE-star effective interaction Veff(D)

is ultrasoft in nature and caused mainly by the entropy of the
trapped counterions [27–29]. On the basis of Veff(D), the phase
diagram of PE-star solutions has been drawn [30], showing
crystallization into fcc- and bcc-phases for sufficiently high
functionalities f and partially confirmed in the experimental
study of Furukawa and Ishizu [12]. Though the validity of the
pair potential approximation in the high concentration regime
for which some of the crystals in the phase diagram appear [30]
can be put in question [26], estimates of the strength of three-
body forces in concentrated PE-star solutions show that these
are weak [31]. The effect of salt is to both shrink the stars and
to weaken their mutual repulsions [28].

2.2. Complexation of polyelectrolyte stars with colloids

When PE-stars are brought in confinement close to planar and
neutral walls, they maintain their ability to capture most of
their counterions, despite their strong deformation there [32].
The effective PE-star–wall force is now caused not only by
the aforementioned entropy loss of the counterions due to
confinement but also by a chain-compression mechanism when
the star–wall distance approaches the star radius Rs. This star–
wall repulsion has been generalized to curved walls, i.e. neutral
colloids of radius Rc > Rs, by means of a Derjaguin-like
approximation, showing that the star–colloid repulsions drive
a demixing transition at sufficiently high concentrations [33].

A much richer subject is that of the behavior of PE-
stars close to charged walls and, in particular, walls that
carry a charge opposite to that of the star and may lead
to an attachment of the latter on the wall surface, i.e. to
complexation of the star. Though the complexation of
polyelectrolyte chains with oppositely charged surfaces or
colloids has been the subject of intensive research in the last

3 In aqueous solutions, λB = 7.2 Å, which is of the same order as the
monomer length. Charged systems in organic solvents are rare and in this
case the argument holds even more strongly, since λB is larger by as much as
an order of magnitude due to the much lower dielectric constant of organic
materials.
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few years by theory, simulations and experiments [34–53], the
complexation of PE-stars has only recently attracted attention.
Motivated by the intriguing shapes that PE-stars [16, 17] and
charged microgels [54–56] assume when adsorbed on mica
plates, Konieczny and Likos recently studied the adsorption
characteristics of multiarm PE-stars ( f = 10, 18, 30 and
50) on oppositely charged walls [57]. A variety of five
distinct star conformations has been discovered, with narrow
crossover regimes between these. This opens up the way for
the control of surface functionalization by PE-stars and even
dynamical switching between different states by modification
of the surface potential or the pH of the solution.

The case of PE-star complexation on spherical colloids
introduces additional parameters into the problem. Now, apart
from f and the star radius Rs and charge Qs, the colloid
charge Qc and radius Rc enter the formulation of the problem.
Results from computer simulations involving a single PE-
star and a single colloid show that the morphologies of star–
colloid complexes strongly resemble those between stars and
planar walls [57], but the location of transitions between these
depends sensitively on the size ratio Rs/Rc, in particular for
Rs/Rc > 1. These results will be the subject of another
publication [58]. Here, we turn our attention to the case of
complexation of more than one PE-star on the colloid, which
is very promising in opening up possibilities to self-assemble a
novel kind of patchy colloids [59, 60].

To this end, we employ MD simulations using a simplified,
yet semi-realistic, model that contains all essential features: a
single star with functionality f arms, formed by a central core
to which f polymer chains of length N are connected. It is
assumed that all the monomers that constitute the polymers are
identical in showing a mutual short-range repulsive interaction,
modeled by the Weeks–Chandler–Andersen (WCA) or shifted
Lennard-Jones potential

vWCA(r) =

⎧
⎪⎨

⎪⎩

4ε

[(σ

r

)12 −
(σ

r

)6 + 1

4

]

r � 21/6σ

0 r > 21/6σ ,
(2)

where σ is the effective diameter of the particles and the energy
ε fixes the temperature to T = 1.2ε/kB via the Boltzmann
constant kB. The connectivity between neighboring monomers
within the chain is maintained by the standard finite extension
nonlinear elastic (FENE) potential [61]

vFENE(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1

2
kFENE

(
R0

σ

)2

ln

[

1 −
(

r

R0

)2
]

r � R0

∞ r > R0,

(3)

in which a spring constant kFENE = 7ε ensures that the
maximum separation between bonded monomers can not
exceed R0 = 2σ . The interactions with the core of a star are
similar, except that the core is larger and has a hard-core radius
Rd = 2σ from which the interactions with the monomers
emanate. This leads to a short-range repulsion of the form

vc
WCA(r) =

{
∞ r � Rd

vWCA(r − Rd) r > Rd,
(4)

and a binding between the first monomer of each polymer chain
with the core

vc
FENE(r) =

{
∞ r � Rd

vFENE(r − Rd) r > Rd.
(5)

Note that the chains do not have fixed sites, but are free to
redistribute over the surface of the core.

A fraction α = 1/3 of the monomers, distributed in a
periodic fashion along the chains, carries a monovalent charge
+e, which is balanced by an equivalent number of counterions
with charge −e, but interacting otherwise as the monomers
within the arms of the star. The Coulomb interaction between
the charges reads as

βvCoul(r) = λB
Zi Z j

r
, (6)

with Zi = ±1 the valency of a particle, λB = 7.2 Å the
value of the Bjerrum length corresponding to water at room
temperature and β = (kBT )−1. The Coulomb potential acts
between all charged species in the system, including the star’s
and colloid’s own counterions as well as any additional salt co-
and counterions present.

We consider here stars with f = 5 and N = 50, resulting
in a total of Qs = +85 elementary charges per star. Under
these conditions the equilibrium center-to-end radius of the star
(averaged over all arms) in a dilute solution and in the absence
of the colloid is Rs

∼= 26σ [27, 28]. To restrict the search in
the parameter space, which includes the colloid and star radii
as well as their charges, we fix the colloid radius at the same
value as the star’s, Rc = Rs, and vary the colloidal charge Qc

as well as the salinity. Our system consists of a single colloid
and two stars, therefore it makes sense to consider values of
|Qc| not too dissimilar from 2 Qs. Indeed, for |Qc| � 2Qs

only one star will (partially) complex with the colloid, whereas
in the opposite case it is to be expected that additional stars
would complex with the colloid, thus simulating only two stars
does not lead to the equilibrium configuration. The system was
simulated in a cubic box with edge length L = 120σ with full
periodic boundary conditions employing the Ewald summation
technique. In our MD simulations we typically employed a
total of 2 × 106 timesteps for equilibration and an additional
6 × 106 timesteps to gather statistics. Here, the timestep was

t = 0.002τMD, where τMD = √

mσ 2/ε denotes the MD time
unit for the monomers of mass m. Finally, we employed a
Langevin thermostat during the simulation run.

In figure 1, we show a typical equilibrium configuration of
the resulting complex for the case Qc = −180, for which the
two stars together are not capable of neutralizing the colloid
even at full adsorption (|Qc| > 2Qs). It can be seen that, in
the absence of salt (figure 1, left panel), the stars fully adsorb
on the colloid on opposite poles and assume on its surface
a ‘starfish configuration’ [57]. The resulting complex is a
patchy colloid with positively charged caps on the north and
south poles and a negatively charged equatorial region. In a
concentrated system, a large number of such patchy colloids
will be present and they will feature anisotropic interactions
among themselves. We expect that the two adsorbed stars
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Figure 1. Typical snapshots of an undercharged complex formed by two stars with charge Qs = +85 each, adsorbed on a charged spherical
colloidal particle of charge Qc = −180. The light (yellow) and dark (red) balls on the arms denote neutral and charged monomers of the star,
respectively. Light (blue) and dark (blue) spheres in the solution are star and colloid counterions (left panel) as well as salt ions (right panel).
The big sphere in the middle is the colloidal particle. Left panel: no added salt. Right panel: with 0.03 M of added salt.

Figure 2. Same as figure 1 but for a colloidal charge Qc = −120. The PE-chains are denoted light grey (yellow) and the counterions as grey
spheres.

on the poles will fluctuate around their positions on the
approach of a similar patchy colloid but they will maintain
their diametrically opposite locations on average. However, at
variance with the currently popular models for patchy colloids
for which patches attract each other [59, 60], here we have the
opposite case: patches will repel each other and they will be
attracted to the equatorial regions of other complexes. On these
grounds, we call the new complexes inverse patchy colloids.
We anticipate that under the right conditions of Qc, Qs and
size ratios, complexes with different numbers of patches and
arrangements will self-assemble in a mixture.

The form of the patches can be tuned by added salt. As can
be seen in figure 1, right panel, a salinity of 0.03 M is already
sufficient to cause significant detachment of the stars from the
colloidal surface. The resulting star conformations are now
more akin to the ‘anemone configuration’ in the terminology
of [57]. In this fashion, the location of the center-of-charge of

the stars with respect to the fixed colloid center as well as the
distribution of the positive charge in the polar regions can be
tuned by salt. We anticipate that further increase of the ionic
strength of the solution will lead to a breakup of the complex.

In figure 2 we show the situation when the colloid carries
a charge Qc = −120, so that |Qc| < 2Qs in this case.
The first striking feature, seen in figure 2, left panel, is that
we now obtain an overcharged or charge-reversed complex,
since the two stars that are now adsorbing are more than
sufficient to compensate the colloidal charge. At the same time,
the adsorption is now considerably weaker than in the case
Qc = −180 studied before. At all times, two to four chains
are not attached on the colloid. The remaining ones, however,
are strongly attached to it, so that the stars assume now the
‘antenna configuration’ [57]. It is worth noting that although
the salt-free, Qc = −120 case ends up showing a similar
type of distribution of the star distance from the colloid center
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as the Qc = −180 case with added salt (see figure 3), the
star conformations are quite different between the two cases.
Finally, addition of salt for the case Qc = −120 (figure 2, right
panel) leads, as expected, to a very significant detachment of
the stars from the colloidal surface. Here, only one or two star
chains remain attached to the colloid, while the rest extends
into the solution.

The probability distribution P(D) of finding a star center
at distance D from the colloid is shown in figure 3 and
corroborates the results presented above. In particular, it can
be seen that the addition of salt pushes the stars away from
the colloid and enhances the fluctuations of their positions.
Systematic investigations on the types of complexes, on their
characterization and on coagulation kinetics are currently
underway.

3. Polyelectrolyte brushes

3.1. Previous results

Polyelectrolyte brushes result when the charged chains are
grafted on a colloidal sphere whose size is at least comparable
with the height of the grafted polymer. Apart from
solvent quality, additional parameters that affect the brush
conformation here are the salinity, the pH that controls the
amount of charge on the chains and the grafting density �,
defined as � = f/(4πr 2

S), rS being the radius of the colloidal
sphere. With a ≡ �−1/2 denoting the average distance
between grafting points, the ratio a/L plays an important
role in determining the brush monomer profile, L being the
unperturbed polymer size. For a � L one speaks of a dense
brush and the case a � L corresponds to sparse brushes.
Recently, the effects of grafting density on the conformations
of neutral polymer brushes have been analyzed by means of
Monte Carlo simulations [62], establishing a crossover from
the well known parabolic brush profile [63–65] to a fully
stretched regime as a/L → 0. For PE-brushes, on the other
hand, the aforementioned ratio is not a sufficient parameter to
describe the brush conformation; as we will establish shortly,
at least in the sparse brush regime a/L ∼= 1, the absolute value
of L is also relevant.

Recently, Fazli et al [66] conducted a computer simulation
study of planar PE-brushes consisting of rodlike (i.e. stiff) PE-
chains of length L, varying the ratio a/L and monitoring the
dependence of the brush height L0/L � 1 on this ratio and
on counterion valency. For sparse brushes and monovalent
counterions a decrease of the brush height with a has been
found, following the law L0/L − (1/2) ∼ a−2, whereas in the
dense-brush limit, a → 0, L0 approaches L from below. The
brushes considered in [66] featured PE-rods with full rotational
flexibility at their grafting points on the surface.

For dense brushes, a theory has been proposed [67]
that generalizes the theory of effective interactions for
PE-stars [27, 28], and which considers exclusively the
contributions from the entropy of the condensed counterions as
two brushes approach. In this approach, the entropic effective
interaction between two spherical brushes at surface-to-surface
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Figure 3. The probability distribution P(D) of the distance D
separating the colloid and the core of the stars for two colloid charges
−120e (overcharged) and −180e and without and with 0.03 M salt.
The averages are taken over both stars.

distance D vanishes for D > 2L0, and for 0 � D � 2L0 reads
as

βVen(D) = Ntrap

[
y

2RK
ln2

( y

2R

)

+ 2Rc

(
2

RK
− 1

L0

)

ln
(rS

R

)
+ ln

(
2L0

RK

)]

, (7)

where y ≡ (D + 2rS), K = 1 − 2rS/R + x(1 − ln x), x =
y/(2R), Ntrap represents the number of spherically trapped
ions, and R = rS + L0. A similar shape was found by Dubois
et al for the related case of polyelectrolyte-coated colloids [68].

In a recent paper [69], Kegler et al measured both the
structural characteristics (brush height and its dependence on
ionic strength) and the force–distance dependence between
sparse spherical PE-brushes, employing a sophisticated and
sensitive optical-tweezer apparatus that featured an accuracy
of 1 pN for the forces and 3 nm for the separation. The
grafted polyelectrolyte employed in [69] was stiff, double-
stranded DNA (ds DNA). A subsequent theoretical analysis
of a large collection of data [70] revealed that the dense-
brush expression for the force–distance dependence derived
from equation (7) above, Fen(D) = ∂Ven(D)/∂ D, fails to
account for the experimental data. Instead, a different physical
mechanism giving rise to the brush–brush repulsion was put
forward. On the basis of the fact that the brushes are sparse
and the chains have a rodlike shape, it has been argued that the
forces arise due to mutual compression [32] of the ds DNAs of
each brush against the surface of the opposing colloidal sphere.
This results in a new expression for the effective brush–brush
interaction, Vc(D), whose validity has been amply confirmed
by direct comparison with experimental data and reads as [70]

βVc(D) = (Zeff N)2 λB

D

{

2 ln

(
D

d

)

+
(

D

L0

)3 [

ln

(
L0

d

)

− 1

]}

. (d � D � L0) (8)

In equation (8) above, d is the diameter of the grafted chains
(d = 18 Å for ds DNA) and Zeff is a fit parameter that
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describes the net charge per monomer (or per chain) resulting
from the partial compensation of the bare DNA charge through
counterion condensation. Typical values of Zeff turn out to
lie in the range of 10% [70], a value that reasonably agrees
with the degrees of compensation found for PE-stars [27, 28].
Nevertheless, this value along with other characteristics of the
brush that have been taken as input in the theory of [70] on the
basis of experimental evidence (brush height and orientation
of chains to the surface) should be analyzed on the basis of a
realistic simulation model. We have performed such detailed
simulations and present our approach and results below.

3.2. The simulation model

The spherical DNA polyelectrolyte brush is modeled as a
large, neutral sphere of radius rS with f chains of N charged
monomers (beads), with radius rDNA, each grafted at one end
to the colloidal sphere. Counterions with radius rC+ are
added to maintain charge neutrality in the implicit-solvent
system, and, in some simulations, salt is also included. The
short-ranged excluded volume interactions of the DNA beads,
the counterions, and the salt ions, as well as of the large
colloidal sphere, are described by shifted/truncated Lennard-
Jones potentials, assuming good solvent conditions.

V αβ

LJ (r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4εLJ

[(
σLJ

r − rαβ

)12

−
(

σLJ

r − rαβ

)6

+ 1

4

]

,

r � 21/6σLJ + rαβ

0, r > 21/6σLJ + rαβ

(9)

where εLJ = 1.0 kJ mol−1 and σLJ = 4.0 Å.4 Such a
potential was applied to each component of the system so that
the potentials at the surfaces of every object were identical,
independent of the object’s size, where α, β = S, DNA or
C+, the latter denoting the counterions. In particular, rαβ =
(rα + rβ) − σLJ with rC+ = (1/2)σLJ, rS ranges between 600
and 1300 Å, and rDNA = 9.0 Å, the approximate radius of the
DNA molecule [71].The mass of each DNA bead was taken
to be 660 amu (1 amu = 1.66 × 10−27 kg) [72] and that of a
counterion or salt ion as 20 amu.

The DNA chains were grafted to the colloidal surface by
tethering the first DNA bead of each chain to fixed locations
on the colloidal sphere. These fixed locations initially were
determined by placing f = 100 charged particles on the sphere
and allowing them to distribute themselves uniformly over the
sphere to minimize their repulsive electrostatic energy. The
first DNA beads and these fixed locations and adjacent DNA
beads were bonded via a harmonic potential

Vb-harm(r) = (1/2)kb (r − h)2 (10)

where h = 3.4 Å, corresponding to the rise (bond length)
between neighboring B-DNA base pairs, and the value of
kb = 210 kJ mol−1 Å

−2
was chosen to give a dispersion of

≈0.15 Å in the rise [73, 74].

4 Note that the value of εLJ employed here is εLJ = 0.4 kBT in thermal units
and thus about half of the value employed for the parameter ε for the PE-stars
in equation (2).

Stiffness was imposed on the DNA chains by including a
harmonic valence angle potential between neighboring bonds

Vθ-harm(θ) = (1/2)kθ (θ − π)2 . (11)

The value of kθ was varied in the simulations from 0 to
750 kJ mol−1, corresponding to persistence lengths of the
charged chains with values ranging from ∼50 to 1000 Å. (Note
that the charge on the DNA beads and the finite size of the
beads also contribute to the rigidity of the chain.)

The chains and counterions also interacted electrostati-
cally. Each DNA bead was given a negative unit charge −e.
The negative charge of each DNA bead of the brush was offset
by a corresponding number of monovalent counterions. The
electrostatic potential between the charges was described by
the usual Coulomb potential5

VCoul(r) = Zα Zβe2

4πεε0r 2
(12)

where Zα(Zβ) is the valency of particle α(β), ZDNA = −1
and ZC+ = +1. Here, we assume that the water solvent can
be implicitly treated as a dielectric background with ε = 80
and ε0 is the permittivity of free space. In some simulations,
salt, described as co-ions (S−) and counterions (S+) with
the same LJ parameters as the DNA’s counterions, was also
included. The valencies of the salt cations were varied; values
Z S+ = +1, +2 and +3 were considered.

Simulations were carried out in a cubic box with a
side length of 4000 Å and periodic boundaries, the brush
situated at the center. Increasing the volume of the box
by 50% was found to yield results within the uncertainty of
the quantities being measured. Coulombic interactions were
computed using the three dimensional version of the Ewald
summation method with ‘conducting’ boundary conditions.
The parameters for the Ewald sum were chosen to give a
relative error in the computation of the Coulombic interactions
of the order of 10−6. The canonical (NV T ) ensemble using
the Nosé–Hoover thermostat was used, at a temperature T =
298 K. Initial configurations were chosen with the chains
being fully extended with neighboring beads on the chain at
their equilibrium bond length and the counterions distributed
randomly within 100 Å of a chain. A typical simulation
consisted of Neq � 105 equilibration timesteps (2 fs step−1)
and Nprod ∼ 5 × 105 production steps. A snapshot from a
simulation of our model brush is shown in figure 4.

3.3. Results and discussion

The DNA grafting density, the length of the DNA chains, the
salt concentration and valency, and the stiffness of the chain
were all varied (see table 1), whereas the number of chains
was held fixed ( f = 100), for the individual simulations.
We determined a number of quantities, the most relevant for
this study being the brush height L0 and the degree to which
counterions or salt ions neutralize the net charge of the brushes.

5 In this section and, in particular, in equation (12) we express the Coulomb
interaction in the SI system because we have employed SI units in expressing
all other energy scales as well.
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Figure 4. A snapshot of a simulation of a brush with stiff chains after
the system has equilibrated. Here, the parameters are f = 100,
N = 100, � = 10−5 Å

−2
, and kθ = 750 kJ mol−1. The PE-chains

are denoted yellow and the counterions are rendered as gray spheres.
Most counterions in the brush are concentrated about the DNA
chains.

The former is defined as the distance from the colloid surface
at which the normalized chain radial distribution 4πr 2ρDNA(r)

falls to half that of fully extended chains. The effective
charge Zeff of the brush was taken to be the ratio of the sum
of the charges of those counterions and salt counterions/co-
ions within a distance of L0 of the colloid surface to the
absolute charge of the brush. Full neutralization of the brush
corresponds to Zeff = 0. This effective charge of the
brush is a lower limit because there exists a large counterion
concentration in the halo region beyond L0, as can be seen in
figure 5.

The grafting density was varied by changing the radius of
the colloid, keeping f fixed. The principal grafting density
studied was 10−5 Å, which corresponds, roughly, to a nearest
neighbor distance between the grafting points of 340 Å, the
contour length of a fully stretched N = 100-bead chain.
As shown in table 1, the height of the brush for these rigid
chains increases, to a small extent, for increasing grafting
densities, consistent with results of studies of more densely
grafted planar PE-brushes [75]. This may be attributed to
increased repulsion between the chains because of their closer
proximity. With regard to counterion neutralization of the
brush, changing the grafting density displayed a similar trend
to that of changing the length of the DNA chains, since, for
either case, the ratio of the length of the chains to the distance
between nearest neighbor grafting points is altered. Fewer
counterions were found within the brush for lower grafting

900 950 1000 1050 1100 1150 1200 1250 1300

r [Å]

0

10

20

30

40

50

60

4π
r2 ρ(

r)
 [

Å
-1

]

DNA chains (kθ = 750 kJ/mol)

Counterions (kθ = 750 kJ/mol)
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Figure 5. The DNA chain and counterion distributions for spherical
brushes with parameters: f = 100, N = 100, � = 10−5 Å

−2
,

rS = 892 Å and no added salt, for three different values of the chain
stiffness. The thick, downwards-pointing arrow marks the location of
the brush height for fully extended chains.

Table 1. The brush height L0 and the effective charge of the brush
Zeff due to partial neutralization by counterions for simulations with
various chain grafting densities �, number of DNA beads N making
up a chain, ionic strength I of added salt (valency of cation given in
parentheses), and chain rigidities. Uncertainties for L0 and Zeff in all
simulations are ∼5 Å and 0.005, respectively.

� (10−5 Å
−2

) N I (mM) kθ (kJ mol−1) L0 (Å) Zeff

0.5 100 0 750 325 0.247
1.0 100 0 750 329 0.214
2.0 100 0 750 331 0.183
1.0 75 0 750 246 0.262
1.0 50 0 750 163 0.351
1.0 100 0.1 (+1) 750 334 0.171
1.0 100 0.1 (+2) 750 327 0.176
1.0 100 0.1 (+3) 750 330 0.176
1.0 100 0.3 (+1) 750 332 0.142
1.0 100 0.3 (+2) 750 332 0.140
1.0 100 0.3 (+3) 750 332 0.145
1.0 100 0 75 308 0.211
1.0 100 0 0 262 0.205

densities and/or for smaller chains, yielding results similar to
those obtained in studies of planar PE-brushes [76].

We also considered the effects of added salt, for two
different ionic strengths and monovalent, divalent, and trivalent
salt cations. Results are given in terms of the ionic strength,
which is defined as I = ∑

α cα Z 2
α, where the sum is carried

out over all salt ions of species α of concentration cα and
valency Zα . For example, a 3:1 electrolyte contains one-sixth
of the concentration of cations as a 1:1 electrolyte with the
same ionic strength. Adding salt increased the neutralization
of the brush, but no discernible change was observed in the
brush height for these very rigid chains. This result as well as
the sole dependence of L0 on the ionic strength I but not on the
counterion valencies is in agreement with experimental results
on the system modeled in our simulations [69, 70].

7
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We further examined the effects of bending rigidity
(stiffness) kθ on the brush shape. As can be seen from table 1,
a reduction of the stiffness by a factor of 10 (from kθ = 750
to 75 kJ mol−1) only reduces the brush height from 325 to
308 Å. Completely switching the bending rigidity off (kθ =
0) results in a more significant decrease of the brush height
(L0 = 262 Å in this case). The ds DNA molecules (which
do feature bending rigidity) remain almost fully stretched, and
the density profiles ρDNA(r), measured from the brush center,
follow a r−2-dependence, similar to the one seen for dense PE-
stars [27, 28]. In figure 5, the quantity 4πr 2ρDNA(r) is shown,
which displays a characteristically flat profile reminiscent of
the shape of the profiles of neutral brushes for very high
grafting densities [62]. Even for the case kθ = 0 (black curve
in figure 5), the inner part of the brush is stretched due to
electrostatics. Towards the end of the brush, an overshooting of
the curve 4πr 2ρDNA(r) can be seen, caused by enhanced lateral
fluctuations of the chains and some weak coiling towards the
chain ends.

The counterion profiles shown in figure 5 follow those of
the charged monomers on the DNAs but decay more smoothly
than the latter as the chain height L0 is crossed. There is strong
counterion condensation in the interior of the brush and, more
precisely, close to the DNA chains, as can be discerned from
the simulation snapshot in figure 4. The effective charge Zeff

turns out to be of the order of 20% and decreasing with added
salt and with chain length. This number is already only a
factor of 2 higher than the typical Zeff-values employed in [70].
However, the DNA strands employed in the experiments there
were longer, thus we expect Zeff to become lower than the 20%
value found here and approach the theoretical values of [70].
Moreover, in view of the strong counterion condensation along
the DNA strands, it appears more physical to employ in
equation (8) not the bare DNA diameter d but a renormalized
one, deff > d , that takes the layer of condensed counterions
into account. Effectively, this corresponds to a theoretical value
of Zeff necessary to describe the given experimental curves that
is higher than 10%, again bringing it closer to the values from
simulation. Finally, the charge density of the chains used in the
simulations, (1/3.4) e Å

−1
, was only half of that of real DNA.

Upon doubling this value, to match the charge density of DNA
and for an N = 100, � = 10−5 Å

−2
brush, the simulation

yielded a value of Zeff = 10%. Therefore, the values of Zeff

reported in table 1 provide an upper limit for this quantity.
In figure 6 we show the radial distribution functions of

the counterions around the DNA charges. They display very
similar shapes for all three values of the bending rigidity
considered. The curves for kθ = 0 are higher than those
for kθ 
= 0 because in the former case the same number of
counterions has to be accommodated in a brush of smaller
height than in the latter.

Finally, we comment on the orientation of the grafted
DNA chains with respect to the spherical surface of the
colloids, and in particular with respect to the findings of [66],
in which a similar system was considered in planar geometry.
Similarly to Fazli et al, we have considered rigid chains6 freely

6 The system of [66] can be formally obtained by allowing kb → ∞ and
kθ → ∞ in equations (10) and (11).
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Figure 6. The radial distribution function g(r) of the counterions
around a DNA monomer (main plot) and the total number n(r) of
counterions within a distance r of the same (inset) for the DNA
brushes with parameters as in figure 5.

grafted on a surface. For typical values a/L ∼= 1, Fazli et al
found significant deviations of the rods’ orientation from the
direction perpendicular to the surface, whereas in our case the
DNA strands remain at almost perfectly right angles to the
surface of the colloid on which they are grafted, despite the
fact that there is enough space between the grafting points for
them to ‘fall flat’ on the sphere. The reason for this difference
lies in the fact that short rods, N ∼= 10, were considered in the
work of Fazli et al [66], but much longer ones, N = 100, in
this work. The strong electrostatic repulsion between chains
is minimized when they all stand vertical to the surface and
scales as N2 with the number of beads. Thus, as N grows, it
dominates over the entropy gain from an additional, rotational
freedom and keeps the chains not only rigid but also rigidly
oriented with respect to the grafting plane. At odds with neutral
brushes, the absolute value of the chain length, L ∼ N , is a
relevant parameter, and the conformation cannot be described
on the basis of the dimensionless parameter a/L alone.

4. Summary and outlook

We have presented simulation results for two related, charge-
polymer-based spherical colloidal particles: ultrasoft star-
branched polyelectrolytes and sparsely grafted DNA brushes.
The former can aggregate into oppositely charged colloids,
building novel forms of complex, patchy colloids, whose self-
assembly can be externally steered by the relative charges and
sizes of the two components, by the star functionality and
by the salt concentration. The latter display a novel form
of stabilization force against colloidal coagulation, which is
neither strictly steric nor strictly electrostatic in nature. Rather,
it can be qualified as a compression force of the stiff DNA
strands grafted on the colloids. We have shown that the
shape of such brushes is rather insensitive to ionic strength
for rigid molecules. Current and planned research is oriented
towards a systematic investigation of the control of colloidal
patchiness through complexation and the properties of

8
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many-body systems composed of complexes. Further, on
the PE-brush system, we are pursuing full simulations of
two brushes, with the purpose of measuring the compression-
induced forces and analyzing their quantitative characteristics.
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Sukhorukov G B and Möwald H 2005 Chem. Mater.
17 2603

[53] Decher G and Schlenoff J B (ed) 2003 Multilayer Thin Films
(Weinheim: Wiley–VCH)

[54] Serpe J S, Kim J and Lyon L A 2004 Adv. Mater. 16 184
[55] Kim J, Serpe J S and Lyon L A 2004 J. Am. Chem. Soc.

126 9512
[56] Kim J, Serpe J S and Lyon L A 2005 Angew. Chem. Int. Edn

44 1333
[57] Konieczny M and Likos C N 2007 Soft Matter 3 1130
[58] Jusufi A, Konieczny M and Likos C N 2008 in preparation
[59] Bianchi E, Largo J, Tartaglia P, Zaccarelli E and

Sciortino F 2006 Phys. Rev. Lett. 97 168301
[60] Corezzi S, De Michele C, Zaccarelli E, Fioretto D and

Sciortino F 2008 Soft Matter 4 1173
[61] Grest G S 1994 Macromolecules 27 3493
[62] Coluzza I and Hansen J P 2008 Phys. Rev. Lett. 100 016104
[63] Milner S T, Witten T A and Cates M E 1988 Macromolecules

21 2610
[64] Netz R R and Schick M 1998 Macromolecules 31 5105
[65] Seidel C and Netz R R 2000 Macromolecules 33 634
[66] Fazli H, Golestanian R, Hansen P L and Kolahchi M R 2006

Europhys. Lett. 73 429
[67] Jusufi A, Likos C N and Ballauff M 2004 Colloid. Polym. Sci.

282 910
[68] Dubois M, Schönhoff M, Meister A, Belloni L, Zemb T and
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